990286_45374245

California has too much solar power. It needs another grid to share with.

This article was originally published on VOX.com on April 8, 2016 and was written by David Roberts

The US has no national electricity grid. Instead, it has a patchwork of grids, operated as closed-off regional and local fiefdoms with little trade among them.

One of the most important steps America can take to integrate more wind and solar power is to connect and expand those grids.

California is trying to take a small step in that direction. In the process, it is revealing the kinds of political tensions that stand in the way of grid integration.

California needs somewhere to put all its solar energy

The story comes to us via an excellent report by Lauren Sommer at KQED Science. It’s about a problem that’s beginning to hit in California — and will hit in other places in years to come, as renewable energy spreads.

Every so often, solar panels in California produce more solar energy than the grid needs. When these oversupply events occur, grid operators manually “curtail” solar production, cutting some panels off from the grid, effectively letting clean, zero-carbon energy go to waste.

solar curtailment
(KQED)
The dreaded curtailment in California on March 27, 2016.

This doesn’t happen all that often yet — roughly 2.2 GWh of renewable energy were curtailed due to oversupply in 2014, relative to the 44,000 GWh of renewable energy the grid used — but the problem is expected to get worse as wind and solar expand in the state.

This illustrates the key challenge that wind and solar (together known as variable renewable energy, or VRE) pose to self-contained grids: their intermittency. A lot of solar comes flooding in at midday, and then it all goes away at night. Sometimes it can go away all at once and come back a few minutes later (a phenomenon known as “clouds”). Wind can come all at once and then die down all at once.

It’s a challenge for today’s grids to handle both the quantities involved at peak VRE production times and the steep “ramps” up or down in supply and demand that come with VRE.

california's duck curve.
(CAISO)
Fear the duck.

There are many ways to tackle the challenges of integrating VRE. I’ve written about the big picture here and more fine-grained, near-term solutions here.

But perhaps the easiest way to solve the problem, or at least postpone it, is to make the grid bigger. The larger the geographical area the grid covers, the more variations in supply and demand can be smoothed out. When one area is at peak VRE production, it can ship power to other areas rather than curtail it.

That’s just what the California Independent System Operator (CAISO) wants to do: link up California’s grid with those around it. “You’re operating your little piece of the system,” CAISO VP Keith Casey told Sommer of KQED, “but if you can operate it as an integrated whole, you can just operate the system more efficiently.”

Conceptually, this makes all the sense in the world. When it comes to the details, though, the politics can get sticky.

California’s clean grid meets PacifiCorp’s dirty one

There are a number of grid “balancing authorities” (grids run by particular utilities) near California, to which it could theoretically connect:

western interconnection balancing authorities
(WECC)

(Follow the link to see what all those acronyms stand for.)

CAISO’s first partnership is with PacifiCorp, a utility that runs a grid in Wyoming, Idaho, Utah, and Oregon.

CAISO and PacifiCorp.
(KQED)
CAISO and PacifiCorp.

(Earlier this year I wrote about Oregon’s pledge to go coalfree and how it would affect PacifiCorp.)

There are already some (currently little-used) power lines strung between the two regions, which could be used for greater coordination between CAISO and PacifiCorp. So they are planning an integration of their operations, scheduled to be in effect by 2019:

CAISO integration plan
(CAISO)

A PacifiCorp-funded study found that the integration would benefit ratepayers across both regions. And it would certainly help CAISO find a way to export (rather than curtail) its excess solar energy.

But there’s a wrinkle.

If CAISO and PacifiCorp become one big grid, it opens up all sorts of regulatory and legal questions. Who manages an interstate grid? Who regulates it? Do California’s laws apply to it? Can they, legally speaking?

PacifiCorp is a big owner of coal plants — 60 percent of its energy comes from coal. All that coal will now effectively be on California’s grid. California has worked hard, economically and politically, to clean up its grid. What will happen to that progress?

These concerns led several state lawmakers to write the governor laying out a list of “significant unanswered questions” and requirements related to the integration.

California lawmakers' signatures. "Don't forget geothermal!"
California lawmakers' signatures. "Don't forget geothermal!"(CAISO)
California lawmakers’ signatures. “Don’t forget geothermal!”

They want to ensure that California’s pollution and greenhouse gases continue to be reduced, that California’s renewable energy mandates continue to be met, that California ratepayers benefit, and that investment not be shifted into PacifiCorp’s territory at California’s expense.

And because CAISO and its board were created by the legislature, presumably a new act of the legislature would be required to expand them, so these legislators will have to be heard and satisfied. (I asked a top staffer if their questions had been answered to their satisfaction; they have not.)

These parochial concerns make complete sense. These politicians are, after all, representing Californians.

But the bigger picture remains: Grid expansion has to happen eventually. The climate certainly doesn’t care about California’s emissions; it only cares about total emissions. If sharing VRE with PacifiCorp lowers overall emissions, it is to the good, even if Californians consume less VRE than they might otherwise have. Somehow, the economics and politics of grid expansion have to be worked out.

The perils of state-based climate and energy policy

California’s experience reveals some of the dysfunctions that come with the US lacking a coherent national climate policy. When each state with green ambitions has its own regulations, its own targets, its own mandates, even its own grid, it can feel protective of its own progress and loath to dilute it by hooking up with more laggardly states.

California has installed a lot of distributed solar PV.
California has installed a lot of distributed solar PV. (EIA)
California has installed a lot of distributed solar PV.

And California legislators are not crazy to feel that way. Wyoming and Utah are fighting tooth and nail against Obama’s Clean Power Plan. Wyoming is deeply invested in coal production. Oregon-based PacifiCorp is heavily invested in coal plants (though it ismoving away from them). Opening CAISO’s grid to possible federal oversight also opens it to various federal lawsuits, many launched by laggardly states, meant to stop clean energy regulations.

Then again, it’s the laggardly states that need the renewable energy, and the clean states that have got it — in California’s case, at least temporarily, too much of it.

Hooking up into larger and larger grids is part of the logic of transitioning to clean energy. It is necessary in order for California to hit its ambitious 50 percent renewables target. And it’s probably necessary in order for the US to hit the targets it promised in Paris.

On some time scale, a national grid is both necessary and inevitable.

In addition to their utility, power lines make for very dramatic photographs.
In addition to their utility, power lines make for very dramatic photographs. (Shutterstock)
More of these.

Transmission is a one-time fix

Variable renewable energy poses what you might call “whole system” challenges to energy grids. Once VRE rises to a certain level of penetration, it begins to swing between producing more energy than the system needs to and producing, in periods of extended calm or clouds, almost none.

Unless you can do something about those huge peaks and valleys, you need almost 100 percent redundancy — enough backup power plants to supply 100 percent of demand in the event that VRE is providing none.

But big coal and nuclear plants can’t just turn off in the morning and turn on in the evening. Even where they are physically capable, it’s too expensive. So you end up needing lots and lots of natural gas plants. Not ideal.

The way states and countries have achieved high VRE penetration to date is by cheating these whole-system problems. They cheat it by making the system bigger, hooking up transmission to surrounding grids so that they can offload the their occasional VRE surplus and import power to back up their VRE.

That’s what Denmark did, linking its grid to Sweden, Norway, and Germany so that it can export wind power when it has more than it needs and import power when the wind is idle.

denmark interconnections
(Energienet.dk)
Denmark, connected.

That’s what CAISO is trying to do, linking to surrounding Western states.

But note that this is a one-time-only way to postpone the problem. Eventually states or regions are going to reach a point where there are no more bigger grids to hook up. And then the whole-system problems return. At that point, the system can’t be made any bigger, so the problems have to be solved some other way.

We still have to sort out storage and shift demand

One way to tackle the problems is cheap and effective energy storage, to absorb the midday VRE surplus and return power at night or when it’s cloudy.

the garage of the future
(Shutterstock)

The other big one is figuring out ways to shift demand so that it coincides better with periods of peak VRE production. There are lots of ways to do that, from incentives that change human behavior to automated networks of electric vehicle batteries to … water heaters.

California is smart to set its sights on a bigger grid. It will ease the immediate problem. But the state should also be pushing as hard as possible toward better storage and better demand shifting (and all the other strategies I covered here), because sooner or later the whole-system problems have to be solved, and the sooner they are, the greater the long-term payoff.

Zond wind turbines rise up among a young corn crop at the Buffalo Ridge wind farm in SW Minnesota.

Making Way for Wind Power

This article was originally published by the New York Times Editorial Board on April 5, 2016. 

If the United States is going to get serious about cutting carbon emissions from oil and gas, it will have to find ways to scale up its use of renewable energy. Converting wind and solar power into electricity is, in some ways, the easy part. The bigger challenge is developing the infrastructure to transmit that electricity across the country.

In the case of wind, most of that power is generated far from the urban centers that would use it. Transmission would require a new nationwide system of power lines reaching from the windiest parts of the country. Such a system could also allow power suppliers the flexibility to shift supply depending on variations in weather.

Russ Pisciotta is opposed to installing power lines on his farm in Missouri. Credit: Christopher Smith for The New York Times

But some residents in those areas don’t want power lines crossing their property. One project, called the Grain Belt Express and intended to run from Kansas to Illinois, is on hold after being voted down by the Missouri Public Service Commission. There was considerable opposition from landowners, who worried the lines would be unsightly or interfere with farming. Some area residents also objected to the idea of companies building on Missourians’ land in order to sell power elsewhere.

Transmission lines are generally safe, but they would change the appearance of open space in the West and the Midwest. In some cases, lines can be placed underground. But underground lines are far more expensive to construct and maintain than aboveground lines, and lower costs would translate into lower electricity rates for consumers. Lower rates could also speed the nation’s transition from gas-powered cars to hybrid and electric vehicles, further reducing emissions.

Clean Line Energy Partners, the company behind the Grain Belt Express, plans to submit a new application to the Missouri Public Service Commission later this year. The company recently won approval from the Department of Energy for transmission lines stretching from Oklahoma to Tennessee. Clean Line will pay landowners the full market value for easements of land it builds on, plus an annual payment for each structure it builds on their property.

To bring landowners on board, companies will have to pay good prices and be sensitive to local concerns, involving communities early in the planning process. But the country won’t be able to make a swift transition to renewable energy if landowners and local regulators stand in the way.

These turbines on San Clemente Island, California, will reduce the Navy's use of diesel fuel.  National Renewable Energy Laboratory engineers helped the Department of Defense bring wind energy to the military base.

Wind power, booming nationally, grinds to a halt in Wyoming

This article was originally published by the Casper Star Tribune on September 8, 2015 .

The wind industry has a stiff breeze at its back.

The cost of producing wind power is now competitive with coal and natural gas. Wind farms accounted for a third of total power installations nationwide since 2007. And, bolstered by President Barack Obama’s carbon-cutting scheme, the towering turbines will likely comprise a greater share of American’s electricity production in the future. A recent Department of Energy report estimated wind would make up 20 percent of U.S. power generation by 2030, up from around 5 percent today.

But in Wyoming, one of the breeziest states in the country, no new wind capacity has been added since 2010. Moreover, no new additions are expected in the near term, as projects already on the planning board work their way through a lengthy permitting process.

The main constraint facing the industry in the state remains transmission, analysts said.

Wind generation boomed last decade, as projects near existing power lines flourished. The building binge abruptly stopped when the existing lines reached capacity and demand for additional power stagnated.

“Wind has hit the point where, if you site it in the right place, it’s the cheapest form of electricity,” said Robert Godby, a professor who studies power markets at the University of Wyoming. “But in Wyoming, it comes down to that transmission. Transmission lines can be as expensive as the project.”

The uncertainty over the industry’s future in Wyoming has been compounded by a series of recent developments, threatening further delays and adding layers of doubt on wind farms already stalled for years. Those impediments range from concerns about avian deaths to federal tax subsidies and the length of contracts offered to small-scale renewable projects.

“I don’t think wind development is for the meek,” said Jonathan Naughton, director of the Wind Energy Research Center at the University of Wyoming.

***

A federal judge in California recently struck down the U.S. Fish and Wildlife Service’s decision to offer wind developers a 30-year eagle take permit, which would have allowed companies to kill a certain number of federally protected raptors each year without fear of prosecution. The service failed to conduct the appropriate environmental review associated with the 30-year permit, the judge ruled. The take permit is now limited to five years.

The court ruling could have a dampening effect on investment in new wind farms. Bankers might be less likely to lend to projects that could be prosecuted for eagle deaths, the thinking goes. Duke Energy became the first wind developer to be prosecuted for avian deaths in 2013, when it agreed to a $1 million settlement with the U.S. Department of Justice for raptor kills caused by two of its central Wyoming wind farms.

“I don’t think it is a project killer,” Naughton said. “It is just another thing that adds uncertainty when you’re developing a wind farm.”

A Fish and Wildlife spokeswoman declined comment on whether the service would appeal, saying it is reviewing the ruling.

Wind developers shrugged off the decision. The Power Company of Wyoming, which has proposed a 3,000-megawatt wind farm in Carbon County, said the environmental review associated with its take permit will continue. If the Denver-based firm is granted a permit, it will be for five years, a company spokeswoman said.

Eagles are not expected to be a problem for Pathfinder Renewable Wind Energy’s 2,100 megawatt wind farm near Chugwater, said Jeff Meyer, Pathfinder’s managing partner.

And sPower said it would continue to work with the Fish and Wildlife Service to minimize eagle deaths around the planned Pioneer Wind Park, its 80 megawatt wind farm proposed near Glenrock. The company declined to say whether it would seek a take permit.

The American Wind Energy Association, the industry’s chief lobbying group, cast the ruling as hypocritical, noting that other industrial developments are able to apply for permits that cover a project’s lifespan under the Endangered Species Act.

“Somehow a species like eagles that are less imperiled you can only get a permit for five years,” said Tom Vinson, AWEA vice president of regulatory affairs. The lobbying group intervened in the case against the Fish and Wildlife Service, arguing the lengthier permit provided developers economic certainty.

Opponents contend the 30-year permit offers a blank check to industry, allowing wind farms to kill eagles for an extended period of time. The American Bird Conservancy, which brought the case against the service, did not respond to a request for comment.

***

The eagle ruling is just one piece in a wider puzzle of uncertainty facing the industry. A 2.3-cent-per-kilowatt-hour tax credit expired in 2013. A provision in the tax code allows developers who began work in 2014 to qualify for the credit, helping drive a boost in installations in 2015.

Many projects being proposed today are larger than their forebears and do not need the tax credit to be economical, Naughton said. Both Chokechery and Pathfinder’s developers said they were not relying on the tax credit to move forward.

Lazard, an investment bank, estimates that wind power is often cheaper than coal and natural gas — even without the subsidy. The cost of wind power now ranges from $37 per megawatt hour to $81 per megawatt hour. Coal, by contrast, has a cost range of $66 to $151 per megawatt hour while combined cycle natural gas plants boast costs between $61 and $81 per megawatt hour, Lazard found.

Still, political debate over the tax credit’s plight creates uncertainty for developers who don’t know whether they can rely on the subsidy, Naughton said. Congress passed a one-year extension of the credit in 2012, then declined to extend it in 2013. Debate over whether to reinstate the credit in 2016 is ongoing.

“If you go out to the lobbyists, they will say we need it. If you go to the industry, they say we like it but we don’t need it,” Naughton said. “I think what you’re seeing is the maturing of the technology.”

***

Meanwhile, in Wyoming, small-scale producers face a new challenge. Rocky Mountain Power, the state’s largest utility, is seeking to limit the length of contracts granted to small-scale renewable developments from 20 years to three. Utilities are required under the Public Utility Regulatory Act to take electricity from projects that generate less than 80 megawatts of renewable power, provided they do not increase electricity rates. The legislation was crafted during the Arab oil embargo and meant to spur renewable power production.

But Rocky Mountain Power, in a filing to the state Public Service Commission, argued PURPA projects are now overwhelming its system. The Salt Lake City-based utility said it is facing 713 megawatts in proposed PURPA projects, in addition to 413 megawatts in existing PURPA development. Combined, the small scale renewable power developments would be enough to supply 96 percent of its retail electric load.

The flood of proposals comes at a time when Rocky Mountain Power predicts “no need for any system resource until at least 2028,” the utility wrote.

Rocky Mountain Power’s application follows a ruling from the Idaho Public Utilities Commission last month, which saw regulators limit the length of PURPA contracts in that state to two years. Three utilities, including Rocky Mountain Power, argued they had been swamped by proposed PURPA projects, thanks in part to an Idaho regulation providing fixed-price contracts to small-scale renewable projects.

sPower, which plans to finalize a proposed PURPA project in the Pioneer Wind Park, said it would not be affected by a change. The proposal would apply only to proposed PURPA projects, the Salt Lake City-based developer said, noting its contract with Rocky Mountain Power has already been signed.

A company spokeswoman nonetheless defended the long-term contracts offered to small-scale renewable projects.

“Fuel sources for renewable energy projects like solar or wind are unlimited and not volatile like fossil fuels. Long-term contracts allow for stable and predictable energy prices as compared to the variability in natural gas pricing,” said Naomi Keller, the spokeswoman.

Still, transmission remains the greatest hurdle to the industry in the Cowboy State. Wyoming exports far more energy than it consumes, meaning its primary markets are beyond its borders.

TransWest Express is illustrative of the challenge. The 730-mile transmission line, which would run from the Power Company of Wyoming’s Chokecherry Sierra Madre Wind Farm near Saratoga to Las Vegas, was first proposed in 2005. The U.S. Bureau of Land Management is expected to issue a record of decision on the transmission line later this year.

Given the lengthy permitting process, Power Company of Wyoming had to take a giant leap of faith to propose Chokecherry and TransWest Express, said Godby, the University of Wyoming professor.

But until those new lines are built, no new wind farms are expected.

“There is no way to get their energy out of the state the way they want to,” Godby said.

Zond wind turbines rise up among a young corn crop at the Buffalo Ridge wind farm in SW Minnesota.

The main reason wind energy output appears lower in 2015? 2014 was a record high wind year

This article was originally published on September 2, 2015 on the AWEA Blog and written by Michael Googin

2014 saw record high wind output in the U.S., most notably when wind energy provided large amounts of extremely valuable power that helped keep the lights on during extreme cold in January 2014. However, the downside of 2014’s record high output is that it makes 2015 wind output appear to be drastically lower. Several recent news articles have used the comparison against 2014 output to build the narrative that 2015 wind output has been concerningly low.

While the first half of 2015 has seen below average wind speeds, a more meaningful comparison against a longer-term average shows 2015 wind output to be within the normal bounds of inter-annual wind output variation. Moreover, several months of below average wind output are not a reason for concern, as they fall within the band that grid operators and power plant investors expect because many sources of energy experience variability in fuel supply.

The EIA data in the table below show that the first six months of 2014 and 2015 both depart from the more typical wind output in 2013, with 2014 being a few percentage points higher and 2015 a few percentage points lower. Moreover, each datapoint covers only a narrow six month period, and the anomalies seen during those periods were offset by more normal levels of wind output during the latter six months of the year, as shown in the chart further below and as one would expect due to the statistical principle of regression toward the mean.

Time Period First Half 2013 1H 2014 1H 2015
Wind fleet capacity factor 36% 38% 33%

With that full context provided, it is clear that a few percentage point difference in wind output over a few months is not a reason for concern. However, if one focuses solely on the change from 1H 2014 to 1H 2015, as several recent articles have done, then one can get the mistaken impression that the wind output seen during the first few months of 2015 is a cause for concern.

The green line in the chart below shows that the wind resource was extremely high in 2014, significantly higher than any other year in the last 15 years. Even 2013 fell in the top four wind resource years over the last 15 years, so 2015’s wind output would look even less unusual if it were compared to a more typical year than 2013 in the table above.

sample-wide capacity

The following chart shows that the average capacity factor for the first half of 2015 is still higher than that seen in the first halves of 2007, 2009, and 2010, based on an estimate calculated from EIA capacity and January-June generation data for all U.S. wind projects. In addition, total wind energy production in the first half of 2015 is higher than that seen in the first half of any year except 2014.

johnchart

Inter-annual variations in wind output are not a concern, as variability in fuel supply affects nearly all sources of energy. Last year one-third of Midwest coal plants had their fuel supplies curtailed due to railroad constraints, while natural gas pipelines experience congestion or even supply shortages. Natural gas prices have varied by a factor of five over the last 10 years due to fluctuations in supply and demand, resulting in large fluctuations in electricity prices and consumer costs. In contrast, wind plants have no fuel costs, so utilities that diversify their fuel mix with stably-priced wind protect their consumers from electricity price volatility. In addition, all power plants experience failures from time to time, which are a far larger cost for grid operators than the gradual and predictable changes in wind energy output. As another example, the hydropower resource varies more from year to year than the wind resource, yet the Pacific Northwest has successfully relied on hydropower to provide the majority of its electricity for several generations.

The main reason why the United States built an interstate power system 100 years ago was so that a large number of power plants and sources of electricity demand, each of which is inherently unreliable, could be combined to make a reliable power system.

A strong transmission system plays a key role in accommodating the fluctuations in the availability and price of all fuels. For example, transmission lines like the Pacific DC Intertie in the Western U.S. allow wind and hydropower to be delivered from the Pacific Northwest to California when output is high in the Northwest, while the line can flow in reverse when hydropower, wind, and solar generation is high in California and total generation supply is low in the Pacific Northwest.

AWEA Manager of Industry Data and Analysis John Hensley contributed to the analysis included in this post.

Power lines in Denver, Colorado.

HVDC Can Connect Low-Cost Wind To Demand Centers For 2 Cents Per Kilowatt-Hour

Originally published on Greentech Media, August 26 2015

Clean Line Energy believes it can develop long-distance high-voltage direct current (HVDC) transmission lines that will inexpensively move gigawatts of cheap wind (and solar) power — and still allow competitive pricing at the end of the line.

There are wind projects in the Midwest that generate power at 1.5 cents to 3 cents per kilowatt-hour. (That equates to 3 cents to 4.5 cents without the Production Tax Credit.) Yet while these regions might actually be curtailing wind at times and are limited by transmission capacity, other regional grids are hungry for low-cost power or renewable power. Demand is being driven by renewable portfolio standards, the Clean Power Plan, and the retirement of 50 gigawatts’ worth of coal power.

The problem is getting that cheap wind power to where it’s needed.

The founder and president of Clean Line Energy, Michael Skelly, wants to connect low-cost wind resources to major demand points.

He believes that transmission is the key ingredient to getting more renewable energy on-line. “That’s why we started Clean Line,” Skelly said during a webcast hosted by Julien Dumoulin-Smith of UBS Securities equity research. Dumoulin-Smith called the concept “wind by wire.”

Skelly said, “We believe that an independent [company] is suited for the job,” suggesting that most utilities are mandated to meet local needs and are not thinking of the challenge of interstate transmission or providing “the development capital required to get a project like this going.”

The founder of the aspiring merchant-model transmission company said that bigger blades, taller towers and lighter materials mean the central part of the country provides a “deep supply base for the resources we want to tap.” He notes that there are developers active in the region and what they need is “access to markets.”

“We believe our product will be a valuable addition to the grid in the Southeast,” said Skelly.

AC ϟ DC

Despite the dominance of alternating current (AC) on national grids, direct current (DC) is stilla more efficient way to move power over long distances — with about half the line losses and less infrastructure than a comparable AC system.

Skelly’s firm suggests that DC, unlike AC, “allows complete control of power flow and prevents cascading outages.” A Clean Line ±600 kilovolt DC bipole transmission line will have a 3,000 megawatt to 4,000 megawatt capacity.

As Jeff St. John has reported, China is by far the biggest consumer of HVDC technology, spending billions and building tens of thousands of kilometers of new 330-kilovolts-and-up transmission lines. According to earlier reports, HVDC could make up 40 percent of the country’s 300 gigawatts’ worth of new transmission capacity.

Clean Line notes, “The last long-distance HVDC transmission line in the U.S was completed in 1989.”

According to market analysts, there is strong demand for HVDC transmission. Siemens reports on its website, “In the last 40 years, HVDC transmission links with a total capacity of 100 gigawatts [have been deployed.] Another 250 gigawatts will be added in this decade alone.”

An HVDC line requires a converter station on each end; one at the windward end, where the AC voltage of the conventional power grid is converted into DC and one at the delivery end, where the DC voltage is converted back into AC. HVDC equipment vendors include ABB, Siemens, Alstom, AMSC and Schweitzer Engineering Laboratories. Converter stations represent about a third of the total project cost, according to Skelly.

2 cents per kilowatt-hour to get to market

“It will cost producers about 2 cents per kilowatt-hour to get to market,” and that’s an “all-in delivered cost,” according to the company founder.

Skelly suggests that the best business model for a transmission build-out is the “merchant model,” where Clean Line would contract with large wind producers looking to get to market. The energy suppliers would buy capacity from Clean Line — similar to the way the gas pipeline industry works, according to the Clean Line founder.

Typically, most transmission is built through a cost allocation process — PJM or MISO would get together with various utilities and PUCs and cost would be spread among all users of the grid. Skelly notes, “Because we don’t have an inter-regional cost allocation process, we depend on a participant-funded merchant model.”

One of the “biggest parts of our job,” according to Skelly is to get regulatory approval for the 200-foot-wide, 750 mile-long route. He said “having been at this for six years — we are working our way through different regulatory processes” and working with the PUC or federal transmission siting authority. He notes that the routing process requires tremendous levels of stakeholder approval.

One of the big challenges in handling this much power, said Skelly, is the interconnect process “that requires a lot of studies” to make sure these lines don’t cause issues on the rest of the grid. “We spend a lot of time looking at wind integration,” said Skelly. Most high-penetration renewable scenariosemploy HVDC.

Potential offtakers for the delivered power include utilities in the Western U.S., Southeastern U.S., and PJM.

Skelly is confident that wind power can be delivered 750 miles from the source at a cost of under 6 cents per kilowatt-hour without the PTC — making it cheaper than fossil fuels or solar.

Source: Lazard

Skelly said it can take “years for things to unfold” in the space, adding, “The cost of capital for that is reasonably high because it’s a really risky business.” But once a project is built or contracted, “then there’s a tremendous amount of low-cost capital. That’s the piece of the value chain investors prefer to focus on.”

Clean Line is backed by National Grid, Ziff Brothers Investments and Bluescape Resources.

GTM just reported on the recently released Department of Energy/Lawrence Berkeley National Laboratory’s 2014 Wind Technologies Market Report, which sees the wind industry facing policy and supply chain challenges — but projects that the trajectories of capacity growth, blade-size growth and falling prices for wind will continue. (Here’s a link to the slide deck summary in PDF.) Large rotor machines are being used at both low- and high-wind-speed sites. Turbine scaling is boosting wind project performance, even as project costs continue to drop. Annual wind capacity additions rebounded in 2014, with 4,854 megawatts of new capacity — and there’s a great deal of evidence pointing toward a strong 2015 and 2016 to come.

Skelly emphasizes that the transmission development process requires “patience and tenacity” but adds that each of his projects could bring 4 gigawatts of wind to market that previously could not get there due to lack of transmission.

August 9, 2013 - Trask Bradbury (on nacelle) and Pete Johnson of Gemini Rope Access Solutions, inspect the blades of a 3MW Alstom wind turbine by repelling down the blades.  The turbine is undergoing testing at NREL's National Wind Technology Center (NWTC) in Boulder, Colorado.  (Photo by Dennis Schroeder / NREL)

Wind Energy Is Having a Railroad Moment

This article was originally published in SLATE and written by Daniel Gross. 

One of the raps on big renewable energy projects, such as solar plants and wind farms, is that they rely on federal subsidies and tax credits to get off the ground. That’s obvious. Here’s something less obvious: Taxpayers may have subsidized the boom in emissions-free energy, but that’s triggered a whole lot of unsubsidized private investment in turn. Someone has to pay to build the infrastructure that conveys the power from the empty places where it’s produced to the populated places where it’s consumed.

This is particularly evident in wind energy. Developers needs the federal production tax credit—2.3 cents for every kilowatt-hour produced by a wind farm for 10 years after its construction—to justify the nine-figure investments to plant clusters of turbines in the plains. But just as oil needs pipelines and coal needs railroads, wind power needs transmission lines to reach cities. A report by the Edison Electric Institute, a trade group for investor-owned utilities, highlighting some $47.9 billion worth of transmission lines in the works through 2025, found that about $22.1 billion in funds will be spent on transmission projects aimed at integrating renewable energy into the grid.

And there could be much more to come. In Houston, the global capital of the fossil fuel industry, a startup, Clean Line Energy, is aiming to replicate the feats of 19th-century railroad barons, erecting audacious, expensive tracks that will turn farmland and fallow space into economically useful terrain. The company wants to spend about $10 billion in private capital to wire the plains with direct current electricity wire. The names of its proposed lines evoke the age of the iron horse: There’s the Rock Island Clean Line, which would ferry juice 500 miles from Iowa to Illinois; the Grain Belt Express, traversing 780 miles from Kansas to points east; and the Plains & Eastern, which would convey power from the windy Oklahoma panhandle to Memphis, Tennessee. (Here’s a map of Clean Line’s proposedprojects.) Farther to the west, billionaire Philip Anschutz is plotting the TransWest Express, a 730-mile line from Wyoming to Las Vegas. That effort, along with Clean Line’s Plains & Eastern—both of which could get federal approval to proceed this year—“may be the two most ambitious transmission lines ever built in this country,” says Michael Skelly, president of Clean Line Energy. (The Pacific Intertie, which connects Oregon hydropower to Southern California, is actually longer than both of these proposed lines.)

Skelly has some experience tilting at windmills. He was chief development officer of Horizon Wind Energy, a Texas-based development firm bought by  Goldman Sachs in 2005. (In 2008, in another quixotic quest, he ran for Congress in Texas’ deep-red 7thdistrict as a Democrat and lost.) The wind industry boomed in Texas in part because the state, which has its own grid, pushed through a plan that enabled the construction of massive wind farms in the western and northern parts of the state, encouraging about $6 billion in new transmission lines to bring the power to population centers.

Outside of Texas, however, the electricity grid is highly balkanized. Utilities in Oklahoma aren’t particularly interested in figuring out how to convey wind power from the Oklahoma panhandle (where it could be produced in massive quantities) to Atlanta (where it would be consumed in massive quantities). And the federal government has long since gotten out of the business of backing big interstate power highways. (The last major electricity interstate highway it supported was the Pacific Intertie, completed in 1970.) That means a large chunk of America’s wind resources remains stranded.

In 2009, Skelly helped found Clean Line, which has raised more than $100 million in capital from investors including National Grid. The idea: build a series of long-haul transmission lines—400-, 500-, 700-miles long—and rent capacity to wind developers so they can send their power to market. (Rule of thumb: It costs about .3 cents to send a kilowatt-hour of power 100 miles.)

It sounds like a simple business model. But as pipeline builders have found (hello, Keystone XL!), building energy infrastructure that crosses several state lines requires negotiating a maze of state regulators, federal authorities, and private landowners. And for a host of reasons—economic, political, regulatory, environmental—people aren’t always psyched about big projects coming through their proverbial backyards. For example, while Indiana and Kansas have given approval to the Grain Belt Express, which would connect Dodge City, Kansas, to southern Indiana, Missouri has said no. (In certain circumstances, transmission developers can appeal such denials to the federal government, which Clean Line has done.) “A wise person said that anything worth doing takes a decade,” said Skelly. “And we are going to prove them right. We haven’t done this before in this country. We haven’t built four-state transmission lines.”

Skelly is confident that Clean Line can raise the $10 billion needed to build its five proposed lines and that construction could start as early as 2017 if approvals start to come through.

Clean Line’s ambitions highlight the complexities of the arguments surrounding energy subsidies. Yes, Clean Line’s customers—developers of wind plants—rely on subsidies. And those subsidies cost real money. According to the Energy Information Administration wind accounted for 4.4 percent of U.S. electricity production in 2014, or about 180 billion kilowatt-hours. Assuming every one of those kilowatt-hours is eligible for the 2.3 cents per kilowatt-hour (and they’re not—wind farms more than 10 years old can’t get the credit, for example), the production tax credit would amount to a maximum of about $4.2 billion year.

The American Wind Energy Association argues that every form of energy production is subsidized to a degree and that the U.S. is getting a lot in return for whatever subsidy wind receives. The burgeoning wind industry has accounted for some $100 billion of investment since 2008 (a period in which the U.S. suffered a big shortfall in investment), created tens of thousands of permanent jobs, and stimulated the creation of a domestic manufacturing sector. It also funnels $195 million a year in lease payments to farmers, ranchers, and other landowners.

But as Clean Line’s ambitious plans show, the wind boom has also inspired people and businesses to do something they didn’t do much before 2008—think big and funnel private capital into infrastructure projects. And when private firms erect new platforms that encourage other private companies to invest and build, that’s a form of economic stimulus worthy of a few lofty railroad metaphors.

Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. SunEdison is an Original Founding Member of SolarTAC. SolarTAC is an integrated, world-class test facility where the solar industry will test, validate, and demonstrate near-market solar technologies.The Solar Technology Acceleration Center is an integrated, world-class test facility where the solar industry will test, validate, and demonstrate near-market and advanced solar technologies.  The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market.

Stanford Study: U.S. Can Move to 100% Renewable Energy MUCH Sooner Than You Think. Transmission Infrastructure is Critical.

Powering everything in America with renewable energy by 2050 – including transportation – is economically and technically feasible using existing and proven technologies, according to a new study by Mark Jacobson and colleagues at Stanford University.  As scientific evidence grows that avoiding catastrophic climate change impacts might actually require the U.S. and other countries around the world to transition to a 100% renewable energy system (or something very close to it), Jacobson’s study provides a much needed, practical, and high level vision of how the U.S. could achieve it.  Three findings of the study stand out:

  • More than 90 percent of renewable generating capacity is utility-scale – including a large majority of solar PV; virtually all generation is connected to the grid.
  • Transmission and non-battery storage balance the natural variability of wind and solar to provide 24/7/365 power to everyone, everywhere.
  • Electrifying everything, including transportation, together with energy efficiency, demand response, and distributed generation make are essential to the ultimate goal.

Bigger is Better and Cheaper

The welcome and highly visible recent explosion of rooftop solar sometimes obscures powerful economies of scale at work in renewable energy.  Utility scale photovoltaics (PV) produce power at half the cost of rooftop installations.  Wind power is only economical at large scales.  The overwhelming majority of solar and wind power produced in the U.S. today comes from grid-connected, large scale facilities owned by or under contract with utilities.

US renewables

Source: The Solutions Project 

Jacobson’s vision of the future is no different, with large scale renewables providing about 93 percent of the power: 50 percent wind (30.9% onshore; 19.1% offshore); 30.7% utility-scale (PV), 7.3% concentrated solar power (CSP) with storage, 7.2% rooftop PV, 1.25% geothermal power, 0.37% wave power, 0.14% tidal power, and 3.01% hydroelectric power.

Transmission and Non-Battery Storage Smooth Out Variability

How does Jacobson turn myriad variable renewable generators into smooth and reliable 24/7/365 power in all 50 states?  Transmission and storage – batteries not included.  Transmission lines slash natural variability by blending diverse wind and solar resources over large regions:

“. . . while the study bases each state’s installed capacity on the state’s annual demand, it allows interstate transmission of power as needed to ensure that supply and demand balance every hour in every state. We also roughly estimate the additional cost of transmission lines needed for this hourly balancing.”

More transmission, Jacobson notes, would make it even easier and cheaper to achieve 100% renewable energy, by allowing the best quality, least cost resources to serve more customers in more states:

“ . . . if we relax our assumption that each state’s capacity match its annual demand, and instead allow states with especially good solar or wind resources to have enough capacity to supply larger regions, then the average levelized cost of electricity will be lower than we estimate because of the higher average capacity factors in states with the best WWS resources.”

Storage and demand response take care of the remaining variability – but not batteries – which are exclusively reserved for their higher value use in transportation:

“Solutions to the grid integration problem are obtained by prioritizing storage for excess heat (in soil and water) and electricity (in ice, water, phase-change material tied to CSP, pumped hydro, and hydrogen); using hydroelectric only as a last resort; and using demand response to shave periods of excess demand over supply. No batteries (except in electric vehicles), biomass, nuclear power, or natural gas are needed.”

Small is Still Beautiful – and Essential

Despite outsized roles for utility scale renewables and transmission, energy efficiency, distributed generation, and smart technologies to enable demand response remain as large and essential elements of Jacobson’s vision.  Efficiency alone reduces projected 2050 electricity demand by 39.3% – even as every end use, including transportation, converts to electricity.  Power supplied by distributed rooftop solar explodes from a fraction of one percent today to more than 7 percent in 2050.  Demand response plays a critical role in balancing variability. Finally, Jacobson deploys a suite of flexible low-cost resources to maintain high power quality:

“Frequency regulation of the grid can be provided by ramping up/down hydroelectric, stored CSP or pumped hydro; ramping down other WWS generators and storing the electricity in heat, cold, or hydrogen instead of curtailing; and using demand response.”

And It’s All Free

A 100% renewable energy system is actually better than free – a lot better.  The study estimates that by 2050, converting the U.S. to 100% renewable energy would, compared to business-as-usual:

  • Save the average U.S. consumer $260 per year in total energy costs (including transportation);
  • Produce a net gain of 2 million, 40-year energy sector jobs (accounting for fossil fuel job losses);
  • Eliminate 46,000 to 62,000 premature deaths or $600 billion per year due to air pollution; and
  • Avoid $3.3 trillion in worldwide global warming costs due to U.S. emissions.

The future energy system for the U.S. and the world looks clearer every day – all electric, all renewable, and all running on robust and sophisticated continental grids.  No it’s time to start building it.

Wind_Generated_Transmission

The Clean Energy Case for Transmission Has Never Been Stronger

This article was written by Bill White and John Jimison and was originally published on Greentech Media.

In the two years since we outlined how smarter transmission policy could accelerate and reduce clean energy costs in America’s Power Plan, evidence continues to mount that robust high-voltage transmission networks are indispensable to a clean energy future.

Smart transmission planning has enabled most of the wind and solar now operating in the United States and has done so while generating large net economic benefits; one study estimated that co-optimizing generation and transmission planning could save an incredible $90 billion.

But transmission expansion isn’t happening fast enough. Scientists say avoiding catastrophic climate impacts requires slashing global carbon emissions 80 percent or more by 2050. While wind and sunlight can power our nation’s homes and businesses, they can’t be moved in pipelines or rail cars — electric transmission lines are essential, and inadequate transmission remains the principal barrier to potentially explosive renewable energy growth.

So how do we clear this hurdle to our clean energy future?

The Lone Star State shines

Texas provides the best example of how new transmission facilitates renewable energy development. The state’s 2005 Renewable Energy Program directed the Public Utilities Commission (PUC) to identify Competitive Renewable Energy Zones (CREZ), geographic areas where wind generation facilities would be constructed. In 2008, the PUC unveiled a plan to build 3,600 circuit miles of new and upgraded high-voltage lines to deliver 18,500 megawatts of wind energy to Texas consumers.

Completed in 2013, the CREZ lines had connected 14,098 megawatts of wind generating capacity by the end of 2014 — more than one-fifth of all U.S. wind power. Texas added 1,800 megawatts of wind in 2014 alone, more than the installed wind capacity in 39 states. By the end of 2016, Texas installed wind capacity will reach 21,200 megawatts — surpassing the CREZ target by almost 3,000 megawatts.

But wind isn’t the only beneficiary of CREZ transmission. Utility-scale solar photovoltaic facilities — not even part of the original plan — are rushing to connect to the CREZ lines. The Electric Reliability Council of Texas predicts 6,000 megawatts of solar PV generation will come on-line by 2017, catapulting Texas to second in the nation in solar capacity, behind only California.

The economics of Texas’ CREZ make this remarkable story even better. CREZ cost $6.8 billion, but the transmission lines and renewable energy they enable are saving ratepayers $1.7 billion a year in electricity production costs, creating more than $5 billion in economic development benefits and cutting electric-sector carbon emissions 16 percent.

Bottom line: CREZ transmission lines are rapidly paying for themselves and will deliver huge net economic and environmental benefits for decades.

Smart transmission planning benefits across America

Texas isn’t the only place where transmission lines are unlocking renewable resources. California’s Renewable Energy Transmission Initiative identified transmission projects needed to meet the state’s aggressive 33 percent by 2020 renewable energy standard. San Diego Gas & Electric’s Sunrise Powerlinkwas energized in 2012, and in just two years added more than 1,000 megawatts of renewable energy to the utility’s portfolio, increasing its renewable share from 12 percent to 30 percent.

The Midwest Independent System Operator approved seventeen 345-kV transmission lines across nine states at a cost of $5.2 billion to help cost-effectively meet regional renewable energy goals. MISO estimates the so-called “MVP” projects will enable 43 million megawatt-hours of wind energy, reduce carbon emissions between 9 million and 15 million tons per year, improve system reliability, and generate up to $49.6 billion in net economic benefits over the next 20 to 40 years.

Solving the transmission-renewables mismatch

Successes like these prove renewables can grow rapidly at low cost — if transmission is built to connect them. However, the seven- to 10-year lead times for planning and building transmission and one- to two-year lead times for building renewable generation continue to intimidate wind and solar development across the country, despite welcome policy reforms like FERC Order 1000. Developers can’t build large new wind or solar resources unless new transmission capacity needed to deliver their power to customers has been planned years in advance.

Lack of transmission infrastructure also prevents resource-rich states like New Mexico (11th in wind potential, 2nd in solar potential) from exporting huge amounts of high-quality, low-cost wind and solar. Senator Martin Heinrich (D-NM) recently introduced legislation to restore federal backstop authority to site transmission lines, noting similar federal authority has expedited siting of thousands of miles of natural gas pipelines in recent years. From the Dakotas to Arizona, wind and solar resources capable of powering everything in the country dozens of times over remain untapped due to insufficient transmission.

A 2014 update to NREL’s 2012 Renewable Electricity Futures Study found if today’s cost trends continue, an 80 percent renewable energy future is technically feasible and may cost no more than business as usual, not to mention the multi-trillion-dollar public health and environmental benefits. And the cheapest generation, by far, is utility-scale.

The transmission imperative is clear. Now let’s help every region of the country embrace what forward-looking regions have shown: if they take proactive steps to permit and finance transmission infrastructure, the low-cost renewable resources will come.

***

Bill White is president at Norton White Energy and Senior Advisor to Americans for a Clean Energy Grid (ACEG) and John Jimison is managing director of the Energy Future Coalition, which hosts the campaign for ACEG. Both are contributing authors to America’s Power Plan.